
Impact on performance of using JVMTI events for
tracking method calls in place of native methods

generated via bytecode instrumentation

Filip Kliber

JVMTI1 is a programming interface, which provides ways to inspect and control the behaviour of application
running in Java virtual machine. Common use case of JVMTI is to have an Agent, which is a library written in
native language, and target program running in JVM. Preferably during early stages of initialization of the VM,
the agent is loaded into the VM and can register notification handlers for certain events happening in the VM.

One of the events present in JVMTI is MethodEntry (and corresponding MethodExit), which is triggered
upon entry of any method in targeted Java program (including Java Class Library). The specification of JVMTI
states the following:

Enabling method entry or exit events will significantly degrade performance on many platforms and is
thus not advised for performance critical usage (such as profiling). Bytecode instrumentation should
be used in these cases.

This experiment tries to measure the impact on performance of using MethodEntry and MethodExit events
as opposed to bytecode instrumentation.

Terminology (simplified)
ClassPrepare(class) event is an event in the VM, that occurs when a class is fully loaded and prepared,
but no code of that class has executed yet.

VMDeath() event is second important event in the VM, which happens when the VM terminates the execution
and is the last event that will occur during the execution of the program.

ClassFileLoadHook(name, bytecode, new bytecode) event is generated when the VM tries to load class
file for class with given name. The Agent can set new_bytecode and the VM will load different bytecode for given
class.

MethodEntry(method) and MethodExit(method, ret value) events are events that occur when given the
execution of method begins (or ends).

Difficulties
The main issue is with the bytecode instrumentation itself. The running VM informs the attached Agent of when
it wants to load the class (.class) and provides an option to interchange the bytecode of class, that is being
loaded. The problem is, that there exists no library for bytecode instrumentation in C or C++. There are many
libraries in Java, that allow easy modification of existing bytecode. In order to resolve this problem, the Agent
starts a different process, written in java, that acts as instrumentation server, and delegates the instrumentation
process to that server.

1Java Virtual Machine™ Tool Interface — https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

1

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

Agents architectures
The experiment uses four different agents (libraries) written in C++. The structure of all agents is very similar.

When the agent is loaded, it performs needed initialization of itself and registers handlers to important events
generated by the VM.

Agent jvmti none

This is the core of all agents, the only thing it does is measuring the duration of “initialization of VM” (duration
between attachment of the Agent and ClassPrepare event for class containing the main method) and the
duration of the execution of the program (duration between ClassPrepare event for class containing the main
method and VMDeath event).

Agent jvmti events

Also registers both MethodEntry and MethodExit events (after the main class is prepared) and counts how many
such events happen.

Agent jvmti bci

Instead of registering MethodEntry and MethodExit events, it registers ClassFileLoadHook event and on
occurrence of that event requests the BCI2 server to add declaration of following methods:

private static native void __MethodEntry__();
private static native void __MethodExit__(Object ret_value);

and inserts the call to __MethodEntry__ method at the beginning of each method and call to __MethodExit__
before every return statement.

Agent jvmti bci info

Is exactly the same as jvmti_bci, but handlers for __MethodEntry__ and __MethodExit__ also asks the JVMTI
for the representation of currently executing method (retrieved via stack trace). This comparison is done because
the JVMTI events supply this information by default, and it isn’t cheap operation, as it will be seen later.

Both jvmti_bci and jvmti_bci_info have two variants — Instrumenting only classes corresponding to given
benchmark, and instrumenting all classes.

It is important to note, that this description is very simplified and there are lot of technical details, that has
to be treated very carefully (for example invocation of native method can call ClassLoader.findNative, which
is method, that again invokes native call, which results with StackOverflowError).

Also, these two approaches (events and bytecode instrumentation) are not equivalent and both have their
pros and cons. Here are few of them:

- With instrumentation, it is easy to specify which method entries and exists should be tracked. This is not
possible via events.

- Method exit via instrumentation is not capable of covering method exit that happens due to exception
being thrown. On the other hand, Method exit event is fired even in this case and the agent is noted
accordingly.

2stands for ByteCode Instrumentation

2

Benchmarks
In order to test the difference between these agents, following benchmarks were prepared:

VirtualCalls

Is a simple class, that specifies Base interface with int method() method and provides 10 different implemen-
tations. Once the execution starts, pool of size of 100 is populated with random implementations of Base. Then
a implementation is selected at random and the method is invoked. This is repeated million times (106). Then
the pool is reseeded and the process repeats, 10 times.

Zip

Is a simple application, that extracts the content of file compressed via zip and then repacks it back. It uses
ZeroTurnaround ZIP library3. The archive used for testing is ~20MiB large archive containing the source code
of my bachelor thesis.

MatrixMultiplication

Uses EJML library4 to multiply two 256 × 256 matrices of random double values and computes sum of all
elements of the result. Even though the matrices are quite small, performing jvmti_bci_info takes very long time
(minutes, as opposed to milliseconds without any agent), so they are not performed. Analysis of jvmti_bci_info
is thus dependant only on previous two benchmarks.

All benchmarks were run with all agents (sequentially) and this was repeated multiple times to minimize
random noise during the measurements.

The experiment was conducted on my laptop (Windows 7, Intel Core i7–5500U CPU @ 2.4GHz, 8GB RAM)
with no additional programs running.

Results

●●

●

● ●

●

●● ●

● ●

●

●

●

M
atM

ult
V

C
alls

Z
ip

500 1000

None
Events

BCI
BCI All

BCI Info
BCI Info All

None
Events

BCI
BCI All

BCI Info
BCI Info All

None
Events

BCI
BCI All

BCI Info
BCI Info All

Time in ms

A
ge

nt
 u

se
d

Startup time

Above is the graph showing startup times of each agent. It proves, that configuration of events doesn’t add
to the startup time. Instrumenting classes however does, as is seen for bci* agents, and the more classes are
instrumented, the longer it takes.

3https://github.com/zeroturnaround/zt-zip
4http://ejml.org/wiki/index.php

3

https://github.com/zeroturnaround/zt-zip
http://ejml.org/wiki/index.php

●

●●

●

●●

● ●

●

●●

● ●

●●●

●●

M
atM

ult
V

C
alls

Z
ip

0 5000 10000 15000 20000 25000 30000 35000 40000

None
Events

BCI
BCI All

BCI Info
BCI Info All

None
Events

BCI
BCI All

BCI Info
BCI Info All

None
Events

BCI
BCI All

BCI Info
BCI Info All

Time in ms

A
ge

nt
 u

se
d

Total execution time

This graph shows total execution time for each agent. This gives us an idea of how expensive MethodEntry
and MethodExit events are and how expensive is it to ask JVMTI for call stack to retrieve internal representation
of method, that is being currently executed.

M
atM

ult
V

C
alls

Z
ip

1 10 100 1,000 10,000 100,000

None
Events

BCI
BCI All

BCI Info
BCI Info All

None
Events

BCI
BCI All

BCI Info
BCI Info All

None
Events

BCI
BCI All

BCI Info
BCI Info All

Average number of events per ms

A
ge

nt
 u

se
d

Ratio of events per time

Another interesting question would be how fast are events processed by different agents during the execution.
This answer to this can be seen on the graph above. Zip benchmark has significantly lower ratio, because it does
a lot of I/O operations. This is also reasoning behind the difference of ratios between BCI and BCI All.

Reasoning
One of the possible culprits, that comes to mind when dealing with performance fluctuations in Java is JIT.
Java VM can be configured to output information about method being JIT compiled5. This is part of the output
from BCI for VirtualCalls benchmark compiled with specified configuration.

5-XX:+PrintCompilation

4

...
1199 67 n 0 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl3::__MethodEntryHook__ (native) (static)
1199 68 n 0 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl3::__MethodExitHook__ (native) (static)
1202 69 n 0 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl1::__MethodEntryHook__ (native) (static)
1202 70 n 0 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl1::__MethodExitHook__ (native) (static)
...
1256 100 4 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl3::method (24 bytes)
1257 71 3 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl3::method (24 bytes) made not entrant
1260 101 4 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl0::method (24 bytes)
1261 80 3 cz.cuni.mff.d3s.benchmarks.VirtualCalls$Impl0::method (24 bytes) made not entrant
...

The output of BCI Info is pretty much the same, but agent Events is not even attempting to JIT compile
anything, which means that the program is being interpreted for the whole time, which is the reasoning behind
such lower performance.

It is still unknown why methods provided by JVMTI takes that long to execute, but one possible (partial)
solution to that would be to let the instrumentation pass reasonable arguments via the hook (name, class,
parameters, modifiers) directly, because at the point of instrumentation, they are compile time constants. This
approach is not tested.

5

